Small Scales, Big Ideas – Nanodermatology at the Society for Investigative Dermatology

Jason Chouake, Albert Einstein College of Medicine
David Schairer, Albert Einstein College of Medicine
Adam Friedman, MD, Albert Einstein College of Medicine
Adnan Nasir, MD, PhD University of North Carolina at Chapel Hill


The Nanodermatology Society (NDS) recently held its first meeting in conjunction with the annual meeting of the Society for Investigative Dermatology in Raleigh, North Carolina. Scientists from around the globe met in person to present their research, discuss potential future collaborations, and integrate their knowledge. From the nine presentations, three major themes emerged: nanoscale delivery systems, application of nanotechnology in scientific development and research, and safety of nanotechnology.

The development of nanodelivery systems is a hot area of nanotechnology research. Areas of interest range from nanoparticle platforms that can be used for enhanced wound healing or antimicrobial effects to the development of nanoneedles for drug and vaccine delivery. Two new nanoparticle platforms were presented that show the potential for nanotechnology in wound healing. Dr. Meya Li, from Menicon Co., reviewed data on self assembling peptide hydrogels , demonstrating their potential as a carrier of activating or inhibiting factors of wound healing. David Schairer, a dermatology research fellow from the Albert Einstein College of Medicine, showed how nanoparticles could be used to encapsulate, protect and deliver siRNA to promote accelerated wound healing. Harnessing nanotechnology to develop new antimicrobial agents was also highlighted. Jason Chouake, a dermatology research fellow from the Albert Einstein College of Medicine, reviewed his work using N-acetyl-cysteine-nitric oxide nanoparticles to combat virulent gram positive and negative bacterial species. In line with the role of nanotechnology in the management of infectious diseases, Dr. Geza Erdos, from the University of Pittsburgh, discussed how dissoluble microneedle arrays can be used to deliver activated cargo, such as vaccines, to targeted layers of the skin.

Nanotechnology also enables more efficient and sensitive analysis of genes, and these techniques are already being used to characterize the association between specific genes and diseases. Dr. James T. Elder, from the University of Michigan, discussed how gene chips make it possible to identify infrequent or low risk alleles for psoriasis. It is now possible to test cohorts of up to 30,000 patients and thus obtain the statistical strength to identify these previously elusive alleles. Dr. Elder’s work is already being used by other researchers, like Dr. Antonio Costanzo from the University of Rome. Dr. Costanzo uses nanotechnology in the form of next generation sequencing technology coupled with chromatin immunoprecipitation (Nano-ChIP-seq) to explore the pathogenesis of psoriasis. Nano-ChIP-seq provides 2-3 order of magnitude improvement over conventional ChIP-seq in terms of the number of cells required to generate significant results. Using Nano-ChIP-seq, Dr. Costanzo and his colleagues have shown that IKKα is downregulated in patients with psoriasis, and they have discovered a novel nuclear function of IKKα as a repressor of inflammatory genes in keratinocytes. Both of these researchers highlighted how they capitalize on both the cost saving and data enhancing benefits nanotechnology confers to gene chips.

In light of statements made by the FDA concerning the importance of characterizing the safety of new nanotechnologies for consumer use, Nancy Monteiro-Riviere discussed her work in the toxicological assessment of different nanoparticle platforms. She discussed how standards are slowly being developed to assess the safety of emerging nanotechnologies. When asked whether nanoparticle safety could be evaluated by particle class, Dr. Monteiro Riviere replied, “Each nanoparticle is different and the manufacturing processes as well as the particle itself are important factors that determine the potential toxicity of nanoparticles.” Dr. Monteiro Riviere argued that toxicity assays must be carefully selected, and that one assay is not sufficient to characterize the toxicity of a nanoparticle.

Nanotechnology is being utilized and researched worldwide, and it will continue to be a major target of investigation by both private corporations and academic researchers. The collaboration between industry and academia through the Nanodermatology Society offers great potential for both translational and basic research collaborations. The NDS is a forum where scientists from different countries and settings can meet and develop relationships that involve exchanges among researchers in a field where geography and scientific research have no barriers, providing greater chances of success.

In the words of Charles Darwin:
In the long history of humankind (and animal kind, too) those who learned to collaborate and improvise most effectively have prevailed.

To find out more about nanodermatology, we recommend the following resources:

  1. DeLouise LA. Applications of Nanotechnology in Dermatology. J Invest Dermatol. 2012;132(3):964-975.
  2. Blecher K, Nasir A, Friedman A. The growing role of nanotechnology in combating infectious disease. Virulence. 2011;2(5):395-401.
  3. Nasir, A, Wang S, and Friedman A. The Emerging Role of Nanotechnology in Sunprotection: An Update. Expert Review Dermatol. 2011; 6(5): 437-439
  4. Nasir A. Nanotechnology and dermatology: Part I-potential of nanotechnology. Clinics in Dermatology. 2010;28(4):458-66.
  5. Nasir A. Nanotechnology and dermatology: Part II-risks of nanotechnology. Clinics in Dermatology. 2010;28(5):581-
  6. Hia J, Nasir A. Photonanodermatology: the interface of photobiology, dermatology and nanotechnology. Photodermatology Photoimmunology & Photomedicine. 2011;27(1):2-9.
  7. Nasir A, Friedman A. Nanotechnology and the Nanodermatology Society. Journal of Drugs in Dermatology. 2010;9(7):879-882.
  8. Sandoval B. Perspectives on FDA’s Regulation of Nanotechnology: Emerging Challenges and Potential Solutions. Comprehensive Reviews in Food Science and Food Safety. 2009;8(4):375-393.

To learn more about the nanodermatology society, please visit our website:


  • Be sure you are signed in to your account.
  • (You can sign in using the link at the upper-right of the page; it’s a little hard to see – light blue against the black bar at the top of the page.)
  • Once you are signed in, SCROLL to the bottom of the post, and enter your comment in the box provided. (Be sure to click “submit”.)
  • No box? Click the “Permalink” link, then scroll down again.
  • We look forward to your comments!

(the Nanodermatology Society logo is used with permission.)